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ABSTRACT 

Recently, convolutional neural network (CNN)- based channel estimation (CE) for massive multiple-

input multiple-output communication systems has achieved remarkable success. However, complexity 

even needs to be reduced, and robustness can even be improved. Meanwhile, existing methods do not 

accurately explain which channel features help the denoising of CNNs. In this , we first compare the 

strengths and weaknesses of CNN-based CE in different domains. When complexity is limited, the 

channel sparsity in the angle-delay domain improves denoising and robustness whereas large noise 

power and pilot contamination are handled well in the spatial frequency domain. Thus, we develop a 

novel network, called dual CNN, to exploit the advantages in the two domains. Furthermore, we 

introduce an extra neural network, called Hypernet, which learns to detect scenario changes from the 

same input as the dual CNN. HyperNet updates several parameters adaptively and combines the 

existing dual CNNs to improve robustness. Experimental results show improved estimation 

performance for the time-varying scenarios. To further exploit the correlation in the time domain, a 

recurrent neural network framework is developed, and training strategies are provided to ensure 

robustness to the changing of temporal correlation. This design improves channel estimation 

performance but its complexity is still low.  

Index Terms—Deep learning, CNN, RNN, MIMO, channel estimation, robustness. 

1.INTRODUCTION 

All communication the signal goes through a medium (called channel) and the signal gets distorted or 

various noise is added to the signal while the signal goes through the channel. To properly decode the 

received signal without much errors are to remove the distortion and noise applied by the channel 

from the received signal. To do this, the first step is to figure out the characteristics of the channel that 

the signal has gone through. The technique/process to characterize the channel is called 'channel 

estimation'. This process would be illustrated as below. 

 
 

Channel Estimation is the process of finding correlation between the array of complex numbers on the 

left and the array of complex numbers on the right. 

Types of Channel Estimation Techniques Used in MIMO-OFDM 
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ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING(OFDM) 

In OFDM the large data stream to be transmitted is divided into parallel data streams. These data 

streams are fed to the orthogonal carriers at lower rate. Each subcarrier is modulated by using any one 

of the digital modulation schemes such as Binary Phase Shift Keying (BPSK), Quadrature Phase Shift 

Keying (QPSK) and Quadrature Amplitude Modulation (QAM). The data rate for each channel is low 

compared to the conventional data rate for a single-carrier modulation. However, the overall data rate 

is superior or comparable to the single-carrier modulation. Hence this scheme finds it’s applications in 

most of the modern wireless broadcasting systems namely 802.11n (WIFI), WiMAX, LTE and Ultra-

Wide Band (UWB) systems.In MIMO systems multiple antennas are used at both ends of the 

transmitter and receiver. Usage of MIMO-OFDM systems in modern wireless communication 

systems provides increased system capacity and coverage with robustness against multipath fading. 

Because of the unique properties of the MIMO and OFDM systems, these systems are used in high-

speed wireless communication systems. MIMO can be subdivided into three main parts pre-coding, 

spatial multiplexing and diversity coding respectively. Precoding is one of the multi-stream 

beamforming techniques employed at the transmitter. In this method same type of signals are 

transmitted with weighted gains from each of the transmitting antennas in order to maximize the input 

signal power received at the receiver. It also reduces the multipath fading effect but, it requires CSI at 

the transmitter. Spatial multiplexing requires antenna configuration of the MIMO system. In this, a 

high data rate signal is split into a number of low data rate signals and each stream is transmitted 

using different antennas operating at the same frequency. At the receiver these signals arrive with 

different spatial signatures and it can easily separate these data stream into parallel channel.  

3. PROPOSED METHOD 

After introducing the multiuser MIMO-OFDM system and conventional CE methods, we present the 

existing AI-aided channel estimators, including DNN- and CNN-based CE in this section. Besides, we 

analyze the complexity of the current methods and introduce some techniques to improve robustness 

We consider a BS with M antennas serving Nue users, each with a single antenna. OFDM modulation 

with K subcarriers is used. The length of the transmit pilot sequence is P. The received signal at the 

K
th
 subcarrier of the BS is 

 
where the channel between the BS and the n

th
 user, hn, k∈ C M×1, is constant over P time slots by 

virtue of block fading, xn, k∈ C P×1 is the transmit pilot, ρn,k is the transmit power, ⊗ and (·)∗ 

represent Kronecker product and Hermitian transpose and Z ∈ C M×P denotes the white Gaussian 

noise. To estimate the channel, the pilot sequence is orthogonal among different users from the same 

BS, yielding 

 
Then, LS-CE can be expressed as 

 
In the subsequent discussion, we denote the true and the estimated channels of the n

th
 user at all 

subcarriers as 
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However, the pilot sequences of the users from different BSs are not orthogonal, which leads to pilot 

contamination. LS estimation exploits no channel statistics. It has low complexity but poor 

performance. MMSE-CE improves performance by using the channel correlation in time, frequency, 

and antennas. Here, we assume that the channel is static within an OFDM block. For convenience, the 

M × K matrix is converted into an MK × 1 channel vector by concatenating the columns, yielding 

 
The linear MMSE (LMMSE) estimation of the channel vector is 

 
The robust LMMSE estimation is expressed as 

 
As a result, the complexity of the robust LMMSE estimation for each user is reduced to O (MK log 

K). In the following, it is denoted as RLMMSE. Compared with LMMSE, RLMMSE is less 

complicated but performs worse because RLMMSE does not exploit the spatial correlation and 

assumes that the power in the delay domain distributes uniformly 

The estimated channel using the classic fully connected DNN can be written as 

 
where Wi and bi denote the real multiplicative parameter matrix and the additive parameter vector for 

the i
th
 hidden layer, and β (·) is a nonlinear activation function. For fully connected DNN-based CE, 

the sizes of Wi and bi increase with the numbers of antennas and subcarriers. The complexity of this 

architecture is larger than O((MK) 2). The DL-based receiver reveals its superiority for extreme 

scenarios, such as insufficient pilots and nonlinear interference. However, complexity is the key 

restriction to many applications of DL in wireless communications. Thus, CNN-based receivers are 

used to simplify the architecture. In Fig. 1(b), the CE module is usually designed as a CNN-based 

denoiser, where the channels are regarded as two-dimensional pictures with frequency and antennas 

as height and width, the complexity is 

 
where Ni denotes the number of filters in the i

th
 layer, the filter size is c. The input of the i

th
 layer is 

(M, K, Ni−1), which means this input matrix has three dimensions with the sizes M, K, Ni−1, 

respectively. Transfer learning is a common method for adapting the trained network to a new 

environment. According , we can either reduce trainable parameters or exploit novel training 

strategies to save pilot resources online. Some architectures can adjust themselves without online 

transfer learning. The SNR feedback is utilized in  while an extra DNN, called hyper-net, to adjust all 

the trainable 

The channels are converted to a vector, and the correlation is fully utilized. (b) CNN-based CE. The 

channels are considered images, and the correlation of adjacent elements is more important. weights 

in. We take the DNN-based CE as an example to describe the architecture of hyper-net. For 

convenience, the process of a neural network is denoted as a function f (a; b) in the following, where a 

is the input of the network and b contains all the trainable parameters of the network. Thus, Eq. (8) is 

rewritten as 
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where W denotes [W1, · · ·, WL; b1, · · ·,bL], fDNN (·; ·) is the process of the DNN-based CE. Then, 

a hyper-net is used to generate W with some key parameters as an input. The process is expressed as 

 
where W0 denotes the trainable parameters in hyper-net. 

 
Fig. 1. (a) DNN-based CE 

Thus, the entire process is 

 
After W0 is trained, the original trainable parameters, W, are controlled by the key parameters, such 

as lmax and σ 2. These key parameters are provided by the user, which is more convenient compared 

with retraining W online. 

3. RESULTS 

In the following, the low-complexity dual CNN is studied further. As shown in above result the dual 

CNN is compared with the SFCNN and the ADCNN. Although they have the same numberof hidden 

layers and filters, the dual CNN converges faster because the dual CNN has a smaller network size in 

each domain. Meanwhile, the domain transform modules exploit the expert knowledge to help the 

dual CNN learn features quickly. The ADCNN converges as fast as thicken when training epochs < 

200 but theADCNN can reach better NMSEperformance under the training SNR, i.e., 10 db. 

To investigate the denoising performance of different methods, the power distribution in the AD 

domain is displayed using gray images, and the sparsity of the channel poweringabove result helps 

explain the noise power distribution after networks. In this simulation, SNR is set as 10 dB; thus, 

SFCNN is worse than ADCNN, whereas dual CNN is the best. The noise after SFCNN in still has 

power in the green circle, where the delay is larger than six. This result means that SFCNNhas no 

global insight because the max delay is the most critical feature exploited by RLMMSE. 

we train the three networks under SNR=5 db. Dual CNN still outperforms the other two methods and 

is better than LMMSE when SNR ≤ 7 dB. SFCNN is also nearly 3 dB better than RLMMSE when the 
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SNR is 0 dB. This result demonstrates that DL-based methods can outperform conventional methods 

under interference. ADCNN is better than SFCNN when SNR is low and the gap becomes smaller 

with the increase in SNR. This phenomenon means that ADCNN mistakenly takes the channel power 

as noise when trained under low SNR. 
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5. CONCLUSION 

We first developed a CNN-based CE called dual CNN to take advantage of in the SF and AD 

domains. The channel’s sparsity in the AD domain enables the CNN to handle most of the white 

noise, whereas the channel correlation in the SF domain helps ease interference. The SF domain’s 

correlation also reduces the noise power so that the ADCNN has less possibility to be confused when 

distinguishing the channel and noise. Thus, the dual CNN has better performance and robustness than 

estimation in a single domain. We also introduced HyperNet, which does not require online training 

but performs better than the dual CNN and RLMMSE under the trained and untrained scenarios. We 

proposed an RNN framework to improve the CE performance by exploiting the temporal correlation 

of adjacent OFDM blocks. This framework is initiated with a trained dual CNN and learns to perform 

better than dual CNN. The robust design in this framework stabilizes its performance as long as the 

temporal correlation is larger than the assumption in the training set. 
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